4.4. Свет и цвет

Окружающий нас мир всегда полон разнообразнейших красок. Как же возникает это цветовое богатство? Почему каждое вещество окрашено в свой цвет? Изумрудная зелень лугов, золотистые цветы одуванчиков, яркое оперение птиц, крылья бабочек, рисунки и иллюстрации – все это создается особенностями взаимодействия света с веществом и цветовым зрением человека. Окружающие нас предметы, будучи освещенными одним и тем же белым солнечным светом, представляются нашему взору различно окрашенными.

Падая на освещаемый предмет, волна обычно разделяется на три части: одна часть отражается от поверхности предмета и рассеивается в пространстве, другая часть поглощается веществом, и третья проходит сквозь него.

Рис. 4.16
Рис. 4.17

Если отраженная и прошедшая компоненты отсутствуют, то есть вещество поглощает упавшее на него излучение, то глаз наблюдателя ничего не воспримет, и рассматриваемое вещество будет выглядеть черным. При отсутствии прошедшей компоненты оно будет непрозрачным. Ясно, что в этом случае окраска вещества определяется балансом между поглощением и отражением падающих на него лучей. Скажем, синий василек поглощает красные и желтые лучи, а синие отражает – этим и обусловлен его цвет. Цветы подсолнуха желтые, это значит, что из всего диапазона волн они отражают в основном волны желтой части спектра, а остальные поглощают.

Верхняя часть яблока, изображенного на рис. 4.16, имеет красный цвет. Это означает, что она отражает волны, соответствующие длине волны красной части спектра. Нижняя часть яблока не освещена, и потому поверхность его кажется черной. А вот яблоко на рис. 4.17, освещенное светом с тем же спектральным составом, отражает зеленую часть спектра, поэтому мы видим его зеленым.

Рис. 4.18

Таким образом, наблюдаемый нами цвет того или иного вещества определяется длинами волн, которые попадают к нам в глаз после взаимодействия света с веществом. Если это преимущественно синие лучи, то и вещество будет казаться нам синим, если же желтые – то желтым, то есть ощущение цвета создается при условии преобладания в отраженном свете волн определённой длины. Но если в отраженном свете присутствуют все длины волн видимого диапазона, и интенсивность всех волн одинаковая, то цвет воспринимается как белый.

Рис.4.19

Таким образом, если мы говорим, что объект имеет какой-то цвет, это значит, что поверхность этого объекта имеет свойство отражать волны определённой длины, и отражённый свет воспринимается как цвет объекта. Если объект полностью поглощает падающий свет, он будет казаться нам чёрным, а если отражает все падающие лучи – белым. Правда, последнее утверждение будет верным только в том случае, если падающий свет будет белым. Если же падающий свет приобретает какой-то оттенок, то и отражающая поверхность будет иметь такой же оттенок. Это можно наблюдать на закатном солнце, которое делает всё вокруг багровым (рис. 4.18), или в сумеречный зимний вечер, когда снег кажется синим (рис. 4.19).

А как изменится цвет вещества, если заменить солнечное излучение, например, на излучение обычной электрической лампочки?

В спектре лампы накаливания по сравнению с солнечным спектром заметно больше доля желтых и красных лучей. Поэтому и в отраженном свете возрастет их доля по сравнению с тем, что получается при солнечном свете. Значит, освещаемые лампочкой предметы будут выглядеть «желтее», чем при солнечном освещении. Лист растения станет уже желто-зеленым, а синий василек – сине-зеленым или даже совсем зеленым.

Таким образом, понятие «цвет вещества» не является абсолютным, цвет зависит от освещения. Поэтому лишены смысла сообщения о способностях некоторых людей узнавать цвет предмета, помещенного в светонепроницаемую кассету. Понятие цвета в темноте лишено всякого смысла.

Механизм формирования цвета подчиняется вполне конкретным законам, которые открыли сравнительно недавно – около 150 лет назад. Дисперсия света приводит к тому, что, когда белый свет проходит через призму, он разлагается на семь основных спектральных цветов – красный, оранжевый, жёлтый, зелёный, голубой, синий. И наоборот, если смешать цвета спектра, получится луч белого света. Cемь основных спектральных цветов и составляют тот довольно узкий диапазон электромагнитных волн (примерно от 400 до 700 нанометров), которые способен улавливать наш глаз, но и этих трехсот нанометров оказывается достаточно для того, чтобы породить цветовое многообразие окружающего нас мира.