5.6. ПРИМЕНЕНИЕ ЯВЛЕНИЯ СВЕРХПРОВОДИМОСТИ

Интерес к вопросу практического использования сверхпроводников появился в 50-х гг., когда были открыты сверхпроводники второго рода с высокими критическими параметрами как по значению плотности тока, так и по величине магнитной индукции. В настоящее время использование явления сверхпроводимости приобретает все большее практическое значение.

Согласно закону электромагнитной индукции, любой электрический ток возбуждает вокруг себя магнитное поле. Сверхпроводники проводят ток практически без потерь, если поддерживать их при сверхнизких температурах (низкотемпературная сверхпроводимость – НТСП), поэтому они представляют собой идеальный материал для изготовления электромагнитов. В медицине широко используется такая медико-диагностическая процедура как электронная томография. Она проводится на сканере, использующем принцип ядерно-магнитного резонанса (ЯМР), и пациент, сам того не подозревая, находится в считанных сантиметрах от сверхпроводящих электромагнитов. Именно они создают поле, позволяющее врачам получать высокоточные образы тканей человеческого тела в разрезе без необходимости прибегать к скальпелю.

Наибольшее распространение из сверхпроводящих материалов в электротехнике получили сплав ниобий-титан и интерметаллид ниобий-олово. Технологические процессы изготовления исключительно тонких ниобий-титановых нитей и их стабилизации достигли весьма высокого уровня развития. При создании многожильных проводников на основе ниобий-олова широкое применение находит так называемая бронзовая технология.

Развитие сверхпроводниковой техники связано также с созданием ожижителей и рефрижераторов с все большей хладопроизводительностью на уровне температур жидкого гелия. Эволюция температуры сверхпроводящего перехода привела к возможности использования хладагентов с все более высокой температурой кипения (жидкий гелий, водород, неон, азот).

Наиболее широкое реальное применение сверхпроводимость находит при создании крупных электромагнитных систем. Уже в 80-х гг. прошлого века в СССР был осуществлен запуск первой в мире установки термоядерного синтеза Т-7 со сверхпроводящими катушками тороидального магнитного поля.

Сверхпроводящие катушки используются также для пузырьковых водородных камер, для крупных ускорителей элементарных частиц. Изготовление таких катушек для ускорителей довольно сложно, так как требование исключительно высокой однородности магнитного поля вызывает необходимость точного соблюдения заданных размеров.

В последние годы явление сверхпроводимости все более широко используется при разработке турбогенераторов, электродвигателей, униполярных машин, топологических генераторов, жестких и гибких кабелей, коммутационных и токоограничивающих устройств, магнитных сепараторов, транспортных систем и др. Следует также отметить такое направление в работах по сверхпроводимости как создание устройств для измерения температур, расходов, уровней, давлений и т.д.

В настоящий момент имеются два главных направления в области применения сверхпроводимости: прежде всего – в магнитных системах различного назначения и затем – в электрических машинах (в первую очередь, в турбогенераторах).

В представленной ниже таблице перечислены основные области применения явления сверхпроводимости.


Таблица 3. Применение явления сверхпроводимости

Применение

Примечания

Экранирование

Сверхпроводник не пропускает магнитный поток, следовательно, он экранирует электромагнитное  излучение. Используется в микроволновых устройствах, а также при создании установок для защиты от излучения при ядерном взрыве

Магниты

- научно-исследовательское оборудование

- магнитная левитация

НТСП магниты используются в ускорителях частиц и установках термоядерного синтеза

Интенсивно проводятся работы по созданию поездов на магнитной подушке. Прототип в Японии использует НТСП

Передача энергии

Прототипные линии НТСП уже продемонстрировали свою перспективность

Аккумулирование

Возможность аккумулировать электроэнергию в виде циркулирующего тока

Вычислительные устройства

Комбинация полупроводниковых и сверхпроводящих приборов открывает новые возможности в конструировании аппаратуры

Сверхпроводник не пропускает магнитный поток, следовательно, он экранирует электромагнитное излучение. Это свойство используется в микроволновых устройствах, а также при создании установок для защиты от излучения при ядерном взрыве.

Магниты на основе НТСП используются в ускорителях частиц и установках термоядерного синтеза – в различном научно-исследовательском оборудовании. Кроме того, в настоящее время интенсивно проводятся работы по созданию поездов на магнитной подушке, где используется так называемая магнитная левитация. Прототип такого поезда уже есть в Японии, и в нем используется явление НТСП.

Далее, поскольку отсутствие электросопротивления делает очень выгодным процессы передачи энергии, уже созданы прототипные линии из низкотемпературных сверхпроводников, которые продемонстрировали свою перспективность. А возможность сверхпроводников аккумулировать электроэнергию в виде циркулирующего тока используется в современных промышленных аккумуляторах.

И наконец, комбинация полупроводниковых и сверхпроводящих приборов открывает новые возможности в конструировании электронных вычислительных устройств.

Таким образом, спустя почти сто лет со времени открытия сверхпроводимости она из разряда явлений уникальных и лабораторно-курьезных превратилась в общепризнанный факт и источник многомиллиардных доходов предприятий электронной индустрии.