1.5. Арифмометр – от машины Лейбница до электронного калькулятора

Операция умножения многозначных чисел сводится к повторному сложению; именно так поступаем мы, выполняя умножение «столбиком» на бумаге (см. пример).


Рисунок 25. Пример операция умножения многозначных чисел


При реализации этого алгоритма на машине Паскаля приходится несколько раз (в нашем примере шесть) вводить одно и то же множимое, временами сдвигая его на один разряд влево, что очень утомительно.

Оригинальное решение проблемы предложил в 1673 году знаменитый немецкий математик, философ, дипломат Готфрид Лейбниц (Leibnitz, Gottfried; 1646–1716).


Готфрид Лейбниц

Рисунок 26. Готфрид Лейбниц (1646-1716)


Он ввел в вычислительную машину два принципиальных усовершенствования.

Во-первых, для повторного ввода одного и того же числа он использовал ступенчатые валики (по одному на каждый разряд) и поворотную рукоятку. Поворачивая рукоятку на один оборот, можно, в зависимости от положения промежуточной шестеренки на валике, добиться ее поворота на заданную долю окружности.

Ступенчатый валик Лейбница

 Арифмометр Лейбница (1763 г.)

Рисунок 27. Ступенчатый валик Лейбница

Рисунок 28. Арифмометр Лейбница (реконструкция)


Во-вторых, он поместил механизм ввода чисел на подвижную каретку, которая на очередном шаге умножения перемещается влево относительно сумматора на один разряд (в последующих конструкциях арифмометров оказалось удобнее неподвижным сделать механизм ввода, а на каретку поместить сумматор, поэтому сдвиг сумматора происходит вправо).

Таким образом, введя один раз множимое, можно многократно вводить его со сдвигом в счетчик, производя операцию умножения. Операция деления выполняется аналогично, путем повторного вычитания делителя из делимого, для чего рукоятку прибора следует крутить в другую сторону.

Арифметическая машина Лейбница совершенствовалась в деталях, но не в принципе, на протяжении следующего XVIII, а затем и XIX века, она получила название арифмометра и стала производиться многими фирмами. Наиболее популярной была модель французского инженера Карла Томаса, который в 1821 году организовал серийное производство арифмометров в Париже, поэтому арифмометры этой конструкции назывались томас-машинами.


Рисунок 29. Арифмометр Томаса


Только через 200 лет, в 1873 году петербургский изобретатель В.Т. Однер, швед по происхождению, предложил более простое и компактное, чем валик Лейбница, устройство для ввода чисел в арифмометр – так называемое колесо Однера с переменным числом зубцов.


Вильгодт Однер Колесо Однера

Рисунок 30. Вильгодт Однер и колесо Однера с переменным числом зубцов


На базе своего изобретения Однер организовал широкомасштабное производство арифмометров.

В 1917 году Однер эмигрировал в Швецию, но производство арифмометров в России постоянно увеличивалось. На московском заводе имени Ф. Дзержинского арифмометры Однера выпускались под маркой «Феликс», в 1969 году их было произведено 300 000 шт.

Арифмометр "Феликс" образца 1960-х годов

Рисунок 31. Арифмометр Однера начала XX века

Рисунок 32. Арифмометр "Феликс" (1960-е годы)

С помощью арифмометра были составлены фундаментальные математические таблицы, выполнены сложнейшие астрономические расчеты, так что «железный Феликс» – это почтенный и заслуженный вычислительный прибор, и в коллекции музея истории вычислительной техники он стоит на самом почетном месте.

Усовершенствование арифмометра продолжалось вплоть до 70-х годов XX века. К ручке приделали электромоторчик, неудобный рычажковый ввод заменили на клавишный – в результате появилось целое семейство электромеханических калькуляторов.


Электромеханический калькулятор Zoemtron (1960-е годы)

Рисунок 33. Электромеханический калькулятор Zoemtron (1960-е годы)


В середине 1960-х годов появились первые электронные калькуляторы. По своим функциональным возможностям они полностью копировали электромеханические вычислители, имели приблизительно те же размеры, зато работали бесшумно. За прошедшие 30 лет калькуляторы сильно «похудели» (сейчас их встраивают даже в часы и авторучки), подешевели, стали удобнее в пользовании и проч. и проч. Однако в идейном отношении современные электронные калькуляторы недалеко ушли от арифмометра Лейбница: они предназначены для выполнения одной изолированной операции. Если нужно выполнить цепочку вычислений, то приходится каждый раз записывать результат на бумажку и вновь вручную вводить исходные данные для следующей операции. И никакая электроника сама по себе ничего нового не дает, так как в калькуляторах (механических или электронных) не реализован фундаментальный принцип, который собственно и превратил калькулятор в компьютер – принцип программного управления.


Один из первых электронных калькуляторов (1960-е годы)

Рисунок 34. Одна из первых моделей электронного калькулятора (1970-е годы)